15-618 Final Project: Sequence Alignment Using
NKI

Permalink: https://aefremov88.github.io/NKI-sequence-alignment/ README
.html

Team members
Kandasamy Chokkalingam kchokkal@andrew.cmu.edu

Anton Efremov aefremov@andrew.cmu.edu

Summary

In this document, we propose implementing the Smith—Waterman algorithm
for local sequence alignment using AWS’s Neuron Kernel Interface to program
on their systolic-array based NeuronCores. This algorithm features a 2D data
passing pattern, which presents a strong opportunity for multiple levels of
parallelization on their combined vectorized, SPMD, and systolic array based
system.

Table of Contents

e Proposal

Proposal

Background

The Smith—Waterman algorithm solves the problem of local sequence alignment:
given two sequences, it identifies the best matching pair of substrings by com-
puting an optimal alignment score based on a user-defined scoring scheme. This
includes a reward for character matches, penalties for mismatches, and gap
penalties for insertions or deletions. It plays a foundational role in bioinformat-
ics, identifying similar regions between DNA, RNA, or protein sequences. Due
to its quadratic time complexity and the massive scale of modern sequencing
datasets—often involving sequences with billions of elements—Smith—Waterman


https://aefremov88.github.io/NKI-sequence-alignment/README.html
https://aefremov88.github.io/NKI-sequence-alignment/README.html
mailto:kchokkal@andrew.cmu.edu
mailto:aefremov@andrew.cmu.edu

becomes a major computational bottleneck in genomic pipelines. There are GPU-
accelerated libraries, such as CUDASW++, that take advantage of parallelism
to achieve large speedups.

The algorithm’s structure makes it well-suited for this system, as it involves
computing a 2D dynamic programming matrix where each cell H; ; depends only
on its top, left, and top-left neighbors. As shown in the diagram, each cell is
computed as the maximum of the match/mismatch score from the diagonal and
possible insertion or deletion scores from the top or left, adjusted by gap penalties.
This regular, local data dependency pattern provides a lot of opportunity. where
processing elements (PEs) are arranged in a 2D grid and communicate only with
neighbors in a rhythmic, pipelined fashion. Each PE can compute one cell and
pass necessary values to adjacent PEs.

Hi—l,j—l ma}c{Hl-_kJ i~ Wk}

k=1
+H5 (ﬂ-i_. b_j')\
———

}Hi,j

No

mMax {HL j—1— WI;_I

=1

Figure 1: Data dependencies in Smith—Waterman algorithm. Source: Wikipedia.

The SW algorithm is part of a bigger field of problems called sequence matching.
These problems have large importance in bioinformatics - specifically DNA
sequence matching. Real-world workloads are often very long sequences, making
performance crucial, since the algorithm runs in quadratic time. In addition,
real-world workloads can have sequences with a fairly sized alphabet - leading
to large scoring matrices to determine the penalties for misalignment, adding
another to keep track of. Finally, the problem can be extended to align multiple
sequences at once, significantly increasing the workload, but adding another axis
of parallelism across pairs of sequences.



Resources

We'd like to use AWS’s Trainium platform. This platform uses Trainium chips,
which use the NeuronCore architecture and are based off of systolic arrays. The
combination of multiple engines, fast interconnect, and multiple cores, makes
these a perfect chip for running systolic array workloads. We’d need to get access
(likely through credits) to the Trnl AWS Trainium machines.

We'll be using the Neuron Kernel Interface (NKI) language to construct our
implementation, which provides some low-level contructs to make full-use of the
NeuronCores. The library provides both high-level collective-communication
abstractions and low-level CUDA-like reduction operations.

We'll be starting from scratch, although there is the CUDA library for SW
mentioned above. However, we believe our implementation will have to be much
more customized and different in archiecture in order to make full use of the
NeuronCore architecture. The SW algorithm is well documented in the original
paper, however, and there many extensions. This paper (cited below) also
provides a good high-level history and review of existing parallel methodologies
for SW, and will be a good reference for comparison of our implementation.

Smith, T. F., & Waterman, M. S. (1981). Identification of common
molecular subsequences. Journal of molecular biology, 147(1), 195-197.
https://doi.org/10.1016 /0022-2836(81)90087-5

Xia, Z., Cui, Y., Zhang, A., Tang, T., Peng, L., Huang, C., Yang, C., & Liao,
X. (2022). A Review of Parallel Implementations for the Smith-Waterman
Algorithm. Interdisciplinary sciences, computational life sciences, 14(1), 1-14.
https://doi.org/10.1007/s12539-021-00473-0

Platform choice

As mentioned above, we’ve chosen to use AWS’s Trainium & Neuron Kernel
Interface because of its similarity to systolic arrays and other parallelism support.
Dynamic programming problems are a good choice for systolic arrays because
their memory model very closely models 2D DP problems. Those problems (and
SW is no exception) have data dependencies on the array elements across their
column/row (and sometimes elsewhere in the array, but in that case, usually very
local). Systolic arrays are built upon the idea of passing data through (usually)
an array of processors in a very similar way - recieve updates from adjacent
node(s), do a bit of computation, pass it on - exactly the flow described for DP
models.

The NeuronCore chips are well designed for our purposes. The V2, documented
here, come with 4 engines: ScalarEngine, for highly parallelized 1-1 computations;
VectorEngine, for highly paralleized M-to-N computations; TensorEngine: a
128x128 systolic array optimized for tensors and matrix multiplication; and
GPSIMD-Engine, for more flexible and free-form vectorized operations. The


https://aws.amazon.com/ai/machine-learning/trainium/
https://aws.amazon.com/blogs/machine-learning/how-to-extend-the-functionality-of-aws-trainium-with-custom-operators/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/index.html
https://pmc.ncbi.nlm.nih.gov/articles/PMC8419822/

memory hierarchy is software-managed and has 4 layers, which provides more
opportunity to optimize data movement.

The Neuron chips’ TensorEngines (the systolic array based architecture) are
optimized to be able to perform matrix multiplications and operations similar
to matrix multiplications. However, combined with the other engines, we can
achieve a variety of workloads. In addition, combining these engines will provide
the best way to hide memory stalls and maximize throughput through pipelining.
A key challenge, as described further below, will be to find the correct mix of
workloads on engines to maximize speedup.

The challenge

One challenge is the algorithm itself. Smith-Watterman is traditionally a very
iterative algorithm - there do exist CUDA implementations of it that are paral-
lelized well, but our first challenge will be constructing an efficient version of
the algorithm that can run in our systolic array setting. As mentioned in the
previous section, the TensorEngine is the fastest due to the systolic array, but
can only be used for a specific workload, so we’ll have to determine what the best
way to convert as much of our problem as possible to that workload. Besides
that, we’ll have to strike a good balance between the other engines, while not
overloading one engine and sequentializing computation.

Another part of this will be working within the contraints of the NeuronCore
chips, mainly constructing tiles corectly (they must be oriented correctly the “P”
dimension restricted to a max length of 128, and within the restricted memory
hierarchy). As mentioned above, the NeuronCore chips come with 4 engines, each
optimized for a different purpose. One of the biggest challenges for this project
will be determining the correct mix/utilizations of the engines to achieve the best
speedup. In fact, we can implement SW on just the Vector/GPSIMD engines,
using essentially SIMD operations + CUDA-style kernels. However, NeuronCores,
are built to take full advantage of the TensorEngine, so our focus will be on moving
as much computation as we can to the TensorEngines, while working within the
limits of implementing matrix multiplication style computation (convolution,
broadcasting, etc.). It may end up being that different engines are most suited
for different axes of parallelism (TensorE for determining scores/across multiple
sequences).

In fact, managing the memory hierarchy will be, one of the most interesting
facets of this project. The NeuronCore architecture has multiple levels of memory
hierarchy (PSUM/SBUF /etc) - within a processor and across them - and they’ve
just released an even more low level primitive to more directly work with memory
to be even faster, so we’ll need to pay very close attention about how we tailor
our algorithm to decompose the problem well. Another specific tradeoff, for
example, we’ll have to investigate here is if moving data from the GPSIMD
engine to the Vector engine is worth it to use the built-in scan operator on the
Vector engine. We'd also make large use of the TensorEngine - the chip’s built-in


https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/nki/nki_direct_allocation_guide.html

systolic array for a lot of our processing. The data movement may take longer
than the extra time the scan operation saves.

In terms of dependencies, to calculate a specific (i,j) cell, as shown in the above
diagram, we need the cells previous to it in the row and the cell previous to
in the column, as well as the (i-1,j-1) cell. This has a much higher degree of
dependencies than previous problems we’ve implemented in 418, but the key is
that this is well-suited to systolic arrays. The locality, in the traditional sense, is
good across a row, but poor since we need to access values in previous columns.
However, depending on our execution model, this may change with the different
engines we use. There is no divergent execution to worry about since we execute
the same steps for each cell, which means we will not have to worry too much
about workload balance. In addition, the communication to computation ratio is
high since for a cell, on average, we need to take so many max’s across the array
and for each cell. However, since our platform allows us to execute in a SPMD
way, this is less of a concern, since we can operate across multiple data at once.

Goals and deliverables

75%-goal: Successfully implement the Smith-Waterman algorithm using the
systolic array parallel programming model on AWS Trainium via the Neuron
Kernel Interface (NKI). Demonstrate maximum parallelism from this model by
designing an efficient dataflow and pipeline synchronization strategy.

100%-goal: Achieve the 75% goal and run the implementation on a dataset
that approximates real-world usage (e.g., bioinformatics datasets). Perform
detailed profiling to understand performance characteristics, resource utilization,
and parallel throughput for real-world dataset on the Trainium platform.
Specifically, what is our final computation to communication ratio? How much
time are spending moving data? What is the final runtime and how does it scale
with the sequence length (i.e. are systolic arrays a good solution for this problem,
as the theory suggests they should be).

125%-goal: Compare the profiling results and performance bottlenecks
of our systolic implementation with a high-performance CUDA-based
Smith—Waterman library (such as CUDASW++). Analyze differences in
hardware efficiency, data movement costs, and parallel scalability between the
systolic and CUDA execution models OR Extend our implementation to work
for multiple sequence alignment (MSA), in which existing solutions use other,
less accurate algorithms, because of the inability for Smith-Watterman on
existing platforms to scale (it has complexity L™ for n sequences of max length
L, but the best quality).

Schedule



Task

Week 1

Week 2

Week 3

Week 4

Set up Trainium Environment
Start running NKI examples
Write NKI primitives to use in
algorithm

Implement simple SW algorithm
in NKI

Profile algorithm to determine
optimizations

Implement optimizations on SW
algorithms

Start running and profile real
workloads

Holistic analysis of varied

real /worst-case workloads
[EXTRA] Compare with CUDA
library for workload & data
movement, comparison

[EXTRA] Implement multiple
sequence alignment

X
X
X




	Team members
	Summary
	Proposal
	Background
	Resources
	Platform choice
	The challenge
	Goals and deliverables
	Schedule


