
Anton Efremov <aefremov@andrew.cmu.edu>
Kandasamy Chokkalingam <kchokkal@andrew.cmu.edu>

Midway Report for 15-618 Final Project ​
“Sequence Alignment Using AWS Trainium”

Summary

Over the past two weeks, we’ve made steady progress toward our project goals:

-​ We explored various programming options for AWS Trainium and selected nki.language
and nki.isa as the most suitable tools

-​ While awaiting access to Trainium instances, we developed a Python-based
Smith-Waterman (SW) algorithm that mirrors NKI’s computation model

-​ Once partial access was granted1, we set up the environment and began porting our
algorithm to NKI

-​ We also explored relevant NKI primitives and familiarized ourselves with the NKI profiler
using reference programs

Currently, we have ported about 95% of our implementation to NKI, and we expect to finalize the
first working version within a day. We're actively investigating the limitations and characteristics
of the NKI environment to guide our optimization efforts.

Progress vs Plan

We were able to significantly reduce the delay in our plan caused by the late access to Trainium
instances, and we now believe that by the end of this week, we will be fully back on track. See
https://aefremov88.github.io/NKI-sequence-alignment for an updated schedule.

In the remaining two weeks, we plan to complete the rest of our planned deliverables, including
one EXTRA goal:

●​ Implement optimizations for the Smith–Waterman algorithm (which engines, pipelining,
algorithmic changes)

●​ Start running and profiling on real workloads
●​ Conduct a holistic analysis across different workload types, including worst-case

scenarios
●​ [EXTRA] Perform a detailed comparison with the CUDA implementation of SW, focusing

on workload characteristics and data movement

For this extra deliverable, we have already reviewed the state-of-the-art CUDA implementation
described in CUDASW++4.0: ultra-fast GPU-based Smith–Waterman protein sequence
database search, and examined its workflow and data mapping strategy. We plan to analyze the

1 50% of quota was approved, which allows us to run parallel computations on one Trainium
chip, but doesn’t allow to explore additional parallelism by accessing the whole instance,
comprising 16 Trainium chips forming a systolic array

https://aefremov88.github.io/NKI-sequence-alignment
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05965-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05965-6

Anton Efremov <aefremov@andrew.cmu.edu>
Kandasamy Chokkalingam <kchokkal@andrew.cmu.edu>

differences between this GPU-based solution and our Trainium-based implementation to
highlight architectural trade-offs.

After exploring the problem set up, we’re considering replacing our second original EXTRA
deliverable, “Implement multiple sequence alignment,” with a deeper exploration of Trainium
parallelism:

●​ Running on a larger instance (trn1.32xlarge) with 16 chips forming a 4×4 systolic array
●​ Optimizing our implementation using nki.isa, which allows finer control compared to the

higher-level nki.language (which is more CUDA-like)

This shift will allow us to explore more interesting parallelization strategies provided by
heterogenous Trainium architecture.

Poster Session

The central idea of our poster will be the mapping of the Smith-Waterman algorithm onto AWS
Trainium’s unique processor architecture. This mapping is both non-trivial and highly
insightful. Trainium has a deeply heterogeneous, hierarchical structure that enables a lot of
different kinds of parallelism:

-​ A trn1.32xlarge instance contains 16 Trainium chips, physically connected in a 4×4 2D
systolic array topology

-​ Each Trainium chip has 2 NeuronCores
-​ Each NeuronCore contains 4 engines: scalar engine, vector engine, tensor engine

(systolic array), and General Purpose SIMD engine

We will present a clear, layered visualization of this architecture alongside a breakdown of
how the Smith–Waterman dynamic programming matrix is partitioned and pipelined through this
hierarchy.

To make the performance implications of this mapping tangible, we will include profiling results
and visual execution traces, captured using the NKI profiler. These traces will highlight
compute vs. memory bottlenecks, utilization of engine pipelines, and insights into the
advantages of Trainium’s data and compute model. We think this will be particularly interesting
because a lot of optimization challenges on NKI are different in specifics but similar in semantics
to the challenges we’ve discussed in class. For example, data locality is incredibly important in
NKI, but so is having the correct physical representation (which way a matrix is oriented, for
example).

Additionally, we’ll show a comparison of the workflow on Trainium against GPU-based SW
implementations (CUDASW++ 4.0), focusing on differences in memory layout, synchronization,
and data exchange. With this illustration, we will summarize how architectural choices impact
algorithm performance and scalability.

Anton Efremov <aefremov@andrew.cmu.edu>
Kandasamy Chokkalingam <kchokkal@andrew.cmu.edu>

Our goal is for the poster to not just present an implementation but to present new parallel
approaches being unlocked with the emergence of new generation hardware like AWS
Trainium.

Challenges

The main external challenge we are currently facing is a quota limitation. We were approved
for 64 vCPUs, which is enough to run our code on a single Trainium chip (using a trn1.2xlarge
instance). However, to fully explore Trainium’s parallelism - especially its 16-chip systolic array
architecture - we would need 128 vCPUs to access a trn1.32xlarge instance. We’ve submitted a
request for this higher quota and are waiting for a response, but this limitation does not block
our core project goals; there is a risk for the extra experiments we planned around additional
sources of parallelism.

Internally, the main difficulty is adapting to the new programming environment. Writing low-level
code in NKI is different from using standard frameworks like CUDA or even C++. The debugging
process takes time because there are fewer sources and limited documentation, and it is a lot of
trial and error when it comes to understanding how primitives behave in real programs. One
specific thing is running on the 4x4 larger 16-chip architecture - there seems to be a bit of
ambiguity about how effective/feasible optimizing for that architecture will be and how much
speed up we will see, but we believe we’ll have more clarity on that in the next week.

Overall, we feel confident since now that we have a working development environment, things
are moving much faster. We’ve already made strong progress on our implementation - around
95% of the program is debugged.

