
Anton Efremov <aefremov@andrew.cmu.edu> 
Kandasamy Chokkalingam <kchokkal@andrew.cmu.edu> 

Midway Report for 15-618 Final Project ​
“Sequence Alignment Using AWS Trainium” 

Summary 

Over the past two weeks, we’ve made steady progress toward our project goals: 

-​ We explored various programming options for AWS Trainium and selected nki.language 
and nki.isa as the most suitable tools 

-​ While awaiting access to Trainium instances, we developed a Python-based 
Smith-Waterman (SW) algorithm that mirrors NKI’s computation model  

-​ Once partial access was granted1, we set up the environment and began porting our 
algorithm to NKI 

-​ We also explored relevant NKI primitives and familiarized ourselves with the NKI profiler 
using reference programs 

Currently, we have ported about 95% of our implementation to NKI, and we expect to finalize the 
first working version within a day. We're actively investigating the limitations and characteristics 
of the NKI environment to guide our optimization efforts. 

Progress vs Plan 

We were able to significantly reduce the delay in our plan caused by the late access to Trainium 
instances, and we now believe that by the end of this week, we will be fully back on track. See 
https://aefremov88.github.io/NKI-sequence-alignment for an updated schedule. 

In the remaining two weeks, we plan to complete the rest of our planned deliverables, including 
one EXTRA goal: 

●​ Implement optimizations for the Smith–Waterman algorithm (which engines, pipelining, 
algorithmic changes) 

●​ Start running and profiling on real workloads 
●​ Conduct a holistic analysis across different workload types, including worst-case 

scenarios 
●​ [EXTRA] Perform a detailed comparison with the CUDA implementation of SW, focusing 

on workload characteristics and data movement 

For this extra deliverable, we have already reviewed the state-of-the-art CUDA implementation 
described in CUDASW++4.0: ultra-fast GPU-based Smith–Waterman protein sequence 
database search, and examined its workflow and data mapping strategy. We plan to analyze the 

1 50% of quota was approved, which allows us to run parallel computations on one Trainium 
chip, but doesn’t allow to explore additional parallelism by accessing the whole instance, 
comprising 16 Trainium chips forming a systolic array 

https://aefremov88.github.io/NKI-sequence-alignment
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05965-6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05965-6
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differences between this GPU-based solution and our Trainium-based implementation to 
highlight architectural trade-offs. 

After exploring the problem set up, we’re considering replacing our second original EXTRA 
deliverable, “Implement multiple sequence alignment,” with a deeper exploration of Trainium 
parallelism: 

●​ Running on a larger instance (trn1.32xlarge) with 16 chips forming a 4×4 systolic array 
●​ Optimizing our implementation using nki.isa, which allows finer control compared to the 

higher-level nki.language (which is more CUDA-like) 

This shift will allow us to explore more interesting parallelization strategies provided by 
heterogenous Trainium architecture. 

Poster Session 

The central idea of our poster will be the mapping of the Smith-Waterman algorithm onto AWS 
Trainium’s unique processor architecture. This mapping is both non-trivial and highly 
insightful.  Trainium has a deeply heterogeneous, hierarchical structure that enables a lot of 
different kinds of parallelism: 

-​ A trn1.32xlarge instance contains 16 Trainium chips, physically connected in a 4×4 2D 
systolic array topology 

-​ Each Trainium chip has 2 NeuronCores 
-​ Each NeuronCore contains 4 engines: scalar engine, vector engine, tensor engine 

(systolic array), and General Purpose SIMD engine 

We will present a clear, layered visualization of this architecture alongside a breakdown of 
how the Smith–Waterman dynamic programming matrix is partitioned and pipelined through this 
hierarchy.  

To make the performance implications of this mapping tangible, we will include profiling results 
and visual execution traces, captured using the NKI profiler. These traces will highlight 
compute vs. memory bottlenecks, utilization of engine pipelines, and insights into the 
advantages of Trainium’s data and compute model. We think this will be particularly interesting 
because a lot of optimization challenges on NKI are different in specifics but similar in semantics 
to the challenges we’ve discussed in class. For example, data locality is incredibly important in 
NKI, but so is having the correct physical representation (which way a matrix is oriented, for 
example). 

Additionally, we’ll show a comparison of the workflow on Trainium against GPU-based SW 
implementations (CUDASW++ 4.0), focusing on differences in memory layout, synchronization, 
and data exchange. With this illustration, we will summarize how architectural choices impact 
algorithm performance and scalability. 
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Our goal is for the poster to not just present an implementation but to present new parallel 
approaches being unlocked with the emergence of new generation hardware like AWS 
Trainium. 

Challenges 

The main external challenge we are currently facing is a quota limitation. We were approved 
for 64 vCPUs, which is enough to run our code on a single Trainium chip (using a trn1.2xlarge 
instance). However, to fully explore Trainium’s parallelism - especially its 16-chip systolic array 
architecture - we would need 128 vCPUs to access a trn1.32xlarge instance. We’ve submitted a 
request for this higher quota and are waiting for a response, but this limitation does not block 
our core project goals; there is a risk for the extra experiments we planned around additional 
sources of parallelism. 

Internally, the main difficulty is adapting to the new programming environment. Writing low-level 
code in NKI is different from using standard frameworks like CUDA or even C++. The debugging 
process takes time because there are fewer sources and limited documentation, and it is a lot of 
trial and error when it comes to understanding how primitives behave in real programs. One 
specific thing is running on the 4x4 larger 16-chip architecture - there seems to be a bit of 
ambiguity about how effective/feasible optimizing for that architecture will be and how much 
speed up we will see, but we believe we’ll have more clarity on that in the next week. 

Overall, we feel confident since now that we have a working development environment, things 
are moving much faster. We’ve already made strong progress on our implementation - around 
95% of the program is debugged. 


